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Realization of compact Lie algebras in Kmer  manifolds 

D Bar-Moshe and M S Marinov 
Depa.rtment of Physics, Technion-Israel Institute of Technology. Haifa 32000, Israel 

Received 25 January 1994 

Abstract The Berezin quantization 00 a simply connected homogeneous W l e r  manifold, 
which is considered as a phase space for a dynamical system. enables a description of the 
quantal system in a (finite-dimensional) Hilbert space of holomorphic functions corresponding 
to generaliled coherent stam. The Lie algebra associated with Le manifold symmetry group 
is given in terms of first-order differential operators. In the classical theory, the Lie algebra is 
represented by the momentum maps which are funcnons on the manifold, and the Lie product 
is the Poisson bracket given by the Khler stmchlre. The Kmer polentials are constructed 
for the manifolds related to all compact semi-simple Lie groups. The complex coordinates are 
introduced by means of the Bore1 method. The Kjhler structure is obtmned explicitly for any 
unitary group representation. The mcycle functions for the Lie algebra and the Killing vector 
fields on the manifold atz also obtained. 

1. Introduction 

Action of any Lie group on its homogeneous spaces is determined by realization of the 
corresponding Lie algebra by means of first-order differential operators and the Killing 
vector fields. Under some conditions, the group representations can be constructed in 
terms of linear operators in a Hilbert space of functions on the manifotd. In general, this 
construction is called geomewic quantization, and the Hilbert space may be considered as a 
space of states of a quantum dynamical system. Moreover. the manifold is the phase space of 
a classical dynamical system with an appropriate symplectic smcture and Poisson brackets, 
representing the Lie algebra of the transformation group. An important class of such 
homogeneous manifolds, provided with a complex K&ler structure, has been constructed 
on the basis of the Bore1 theory [ 11. A general theory of quantization on W l e r  manifolds 
was developed by Berezin [ 2 4 .  In particular, examples of homogeneous manifolds were 
given in his works. Another approach to geometric quantization is based upon the method 
of coadjoint orbits proposed by Kirillov [SI and Kostant [6]. (Reviews may be found in [7- 
91.) The simplest example, where the group is SU(2)  and the manifold is Sz, was given 
previously by Souriau [IO]. 

The purpose of this work is an explicit construction of the Berezin quantization for 
compact Lie groups. Any unitary group representation corresponds to a (finite, for compact 
groups) Hilbert space of holomorphic functions. The system states can be considered also 
as generalized coherenr states, introduced by Perelomov [Ill.  Section 2 is a short review 
of the Berezin quantization, i.e. construction of the Hilbert space of holomorphic functions 
on Kaler manifolds. Section 3 is an exposition of two realizations of the Lie algebra on 
homogeneous Kiihler manifolds; first, in terms of commutators of holomorphic differential 
operators, and second, in terms of suitably defined Poisson brackets. In section 4, the 
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Bore1 parametrization is introduced for homogeneous manifolds, and the W I e r  potentials 
are constructed, using the projection matrices of [12]. Explicit expressions for operator 
symbols and momentum maps in the local coordinates are presented, which is the main 
result of this work. The subject of section 5 is a construction of the differential operators 
representing the Lie algebra in the space of holomorphic functions on the manifold. The 
appendix contains (i) the derivation of an explicit expression for the Kihler potentials and 
the momentum maps, and (ii) an example: the homogeneous manifolds for unitary groups. 

The notation follows standard texts, e.g. Kobayashi and Nomizu L131. The sum over 
repeated indices is implied throughout the paper. 

2. Berezin quantization on compact Kiihler manifolds 

Let M be a KWer manifold, and K ( z , Z )  be the W l e r  potential, defined in any 
open coordinate neighbourhood of the manifold with local complex coordinates & (U = 
1, . . . , m dim M). If a group G is acting holomorphically on M ,  z + gz, Vg E G, the 
K&ler potential is transformed according to 

(1) 
where @(z; g) is locally a holomorphic function of z. This function must satisfy the cocycle 
condition 

(2) 
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- 
K ( g z ,  @) = K ( z ,  Z) + Wz: g) +WZ; g) 

@(Z; g2gt) = @(&?lZ; g2) + @(Z; gl) Vgi,  E2 E G 
which results from the group property z --t g&z) = (gzg1)z. 

The corresponding K2hler (1,l)-form has the following coordinate representation 

w F)dz" A d i g  wcfi = a,aaK (3) 
where 8. E a / W ,  a, = a/aZg. The form w = -6, is closed, am = 0, 8w = 0, and 
invariant under the group transformations, as follows from (1). The form is called integral 
if, being integrated over any two-dimensional cycle in M ,  it gives an integer, times 2xi. 
The corresponding K N e r  potential is also called integral. 

Any integral K&ler potential is associated with a holomorphic line bundle L: over M .  
The holomorphic sections of L: will be denoted by +; they represent states of a quantum 
mechanical system and axe given by locally holomorphic wuvefunctioons ll.(z). Following 
Berezin 131, a Hilbert space structure is assigned to L by means of the following 8-invariant 
scalar product 

($2- +I)  = C h ~ l l . i ( z ) e x p [ - K ( z , i ) l d l r ( z .  2 ) .  (4) 

Here the invariant volume element is the mth power of w, d p  = i o  A . . . A iw (m times), 
and C is a normalization constant (see equation (10) below). (We assume that the form 
w is non-degenerate, so the total volume is non-zero.) Under the action of the group, the 
wavefunctions axe subject to transformations, corresponding to (l), i.e. 

where C(g) is the operator representing the group element g in the Hilbert space, 

Operators in the Hilbert space, which describe observables of the quantal system, are 
represented with their symbols, e.g. A + A ( z , F ) ,  which are mappings M x M -+ ex. 
The action of the operators in the Hilbert space is given in terms of their symbols [3] 

(6) 

( f i ( g - ' ) + ) ( z )  = exp[-@(z; g)l*.(gz) (5 )  

fikl)fi.(gd = fi(g1gz). 

(All.)tr) = C h  A(C,Z)@(z)exp tK(L Z) - K ( z ,  $1 dirk 2 ) .  



Realization of compact Lie algebras in Kdhler manifolds 6289 

Berezin proved, in particular, that any element of the Hilbert space is reproduced by the 
integral with a unit  symbol 

Moreover, the trace of any operator is given by the integral of its symbol 

For compact manifolds, the trace of the identity operator f exists and equals the total number 
of states N ,  which is finite in this case 

f.+ I ( { . Z ) = I  t r ( f ) = N = C  dp(z,Z). (9) s, 
Constant sections of C. belong to the Hilbert space for the compact case, and in order to fix 
the normalization we assume that $(z) = 1 has the unit norm. As a result, the constant C 
is expressed in terms of the volume V of the manifold 

C-' = expl-K(z, Z)Idp(z, i) = V / N  V = /M dp(z, Z) . (10) 

The Hermitian conjugation in the Hilbert space is represented by the complex conjugation 
of the symbol and transposition of its arguments 

s, 

As follows from (6), the symbol for product of operators is given by an integral of product 
of their symbols (the *-product) 

N ii .+ ( A  * B N J .  1) = S, A(<, i ~ z ,  ii)exp[K(<, i )  - ~ ( 2 . i )  

+ K ( z ,  ?/) - K ( { ,  i)]d&. i). (12) 

Thus the associative algebra of observables for the quantal system is constructed completely 
in terms of the operator symbols. The symbols are functions of two independent variables, 
holomorphic in the first, and anti-holomorphic in the second. The 'physical observables' 
are the reductions to the phase space, where < = z .  

3. The symbol representation of the Lie algebra 

3.1. Differential operators 

As soon as the transformation law for the wavefunctions is given by (5). the symbols of 
the operators representing the group elements are given in terms of the W l e r  potential and 
the transition functions of (1) 

(fi(g)W<) = $1 U,(<. i )W)explK(C,  Z) - K(z, ill W z ,  i) (13) 

U&, 2) = exp[K(g-'C, i) - K ( C ,  i) - a(<, g-')] 

M 

where 
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The second equality follows immediately from (1); it is actually equivalent to the unitarity 
condition, V,-~(c,i) = U,(.?,?). The symbol of the group element is subject to the 
following transformation law 

~ ( h - ' ) f i ( g ) f i ( h )  + Uh-igh(<,i) = U 8 ( h < , z )  Vh E G .  (15) 

Let us turn to the Lie algebra g of the group 8. Introducing a basis ra in g, with 
dimg, one has a Cartesian coordinate representation of the group elements 

g = exp(-t% ~ ( 5 ) .  = - L : ( t ) a m b  (16) 

where are the group parameters, and the field L i  is given in terms of the adjoit group 
representation, so that g-'D,g = 5,. The action of the group G in the manifold determines 
the holomorphic Killing fields 

00 = K ; ( Z ) a m  K; (Z )  D(t )a(gZ)uI .g=e (17) 
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- 

a = 1, . . . , n 
and the corresponding Lie derivatives D, in the group manifold 

(e is the unit group element). The conjugate Killing fields and the differential operators 
are defined similarly. Now the differential operators fa, which act upon elements of the 
Hilbert space L and represent the basis in g, are obtained from (5) 

(18) 5, -+ fa = V. - % ( z )  d z )  = D(t) .@(z;g) lg=r .  
The Lie multiplication is given by that for the basis elemens 

[t. rbl = fobrc -+ [fa, f b ]  = f o b f c .  

One can introduce a real basis, where the structure comtants Gb are real, and are anti- 
self-adjoint operators with respect to the scalar product (4). The same relations are satisfied 
by the differential operators D, and V,, while (n,(z) satisfy the linear differential equations 

(20) V a V b  - v b 9 a  = ftbb'pe. 

The solution to these equations is given in section 5. 

3.2. Symbols 

Elements of the Lie algebra are also represented by their symbols, which can be obtained 
from symbols of the group elements, given in (14) - 

fo --f G(C, Z )  = - T . ( z ,  5) 
= DaUt(Cq ?)18=e 

= V.K(< ,  3 - %(C) 

= -V,K(C, i) + p0(z). 
- ~ 

(21) 
(The first equality is true for the real basis, as soon as fa = -fJ; the last one follows 
directly from (l).) Thus the symbols of the Lie algebra are expressed in terms of the 
coefficients of the symplectic one-fonn generated by the KIihler structure 

To(<,:) =K;(<)A~(C--?) - v ~ ( F )  (22) 

dK = A,d(" + F d i a .  (23) 

where A, are coefficients of the one-form 
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Evidently, the symbols satisfy the following relations: 
- 

$ T , ( z , i )  = O,SK!(Z) a , w z , i )  = - - O ~ ~ K : ( Z ) .  (24) 

The functions T&> 2) are called (equivariant) momentum maps. It can be seen from (15) 
that their transformation law is given by the adjoint group representation g + A ( g )  

(25) g - ' W  = Ai(g)rb + T o ( g S , B )  = At(g)Tb( t ,  i) vg E F. 
Applying the Lie equations for 0, and (ZO), from (21) and (24) one obtains 

This equality is equivalent to the fundamental property of the momentum maps: they 
implement a realization of the Lie algebra g in terms of the Poisson brackets 

(To, Tb)P.B. = f $ c .  (27) 

We have introduced here the Poisson brackets in M ,  which are determined by a field m 
dual to the form o. Namely, for any two symbols A(z ,  Z) and B(z, i) the definition is 

With this definition, mPe = ( B ,  d ] p e ,  and the Jacobi identity for the Poisson brackets 
results from the fact that o defined in (3) is a closed form. 

The equivalence of the commutators (19) and the Poisson brackets (27) is the reason 
why the operator-symbol correspondence is called quantization. One should note that the 
commutator-Poisson bracket correspondence holds only for elements of the Lie algebra g, 
but not necessarily for any pair of observables, which belong to the enveloping algebra. 

The construction of the Kmer  potentials for the homogeneous manifolds, described in 
the next section, enables an explicit derivation of the momentum maps. 

4. The K a e r  structure on compact homogeneous manifolds 

4.1. Flag manifolds 

Let B be a compact simple Lie group, and 7 be its maximal Abelian subgroup (the maximal 
torus). The coset space F = B / 7  (the flag manifold) is provided with a W l e r  structure 
[l]. We shall introduce a local complex parametrization in F by means of the canonical 
diffeomorphism G / 7  1 Gc/P. Here GC is the complexification of G; the parabolic subgroup 
P satisfies the requirements P 3 B, where B is a Bore1 subgroup of G and P n G = 1. 

We shall employ the canonical basis {raj = [hj,e*a) in the Lie algebra g, where 
j = 1,. , . , r rank(@ and (CY] E A: are the positive roots of g. In particular, the Lie 
products of the basis elements are 

(29) 

Here the (w,} are the fundamental weight vectors which constitute a system dual to primitive 
roots { y ( j ) ]  in the root space, i.e. 

(30) 

[hj, h t ]  = 0 [h j ,  e,] = (CY w j ) c  . 

2 p )  . w j , ) / ( y ( j )  . # j ) )  = 8, .  
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(Any positive root (Y is a sum of the primitive roots with non-negative integer coefficients.) 
For any unitary imeducible group representation RI, its highest weight 1 is given by a sum 
of the fundamental weights with non-negative integer coefficients 

D Bar-Moshe and M S Marinov 

Given the canonical basis, the Lie algebra g is split into three subalgebras, g = 
g- @ t @ g+, corresponding to three subsets of the basis elements, ( e -a ] ,  { h j ] ,  ( e u ] .  
Respectively, the Lie algebra g+ generates a nilpotent subgroup 8+ c G", and the Lie 
algebra p = g- eB t' generates P. Any element g E 0' has a unique Mackey decomposition, 
g = f p ,  where p E P and f E Gc (the decomposition is valid for all g, except for a 
subset of a lower dimensionality). The complex parameters which can be introduced in 3 
correspond to the positive roots of g 

As soon as f ( z )  is an element of a nilpotent group, its matrix representations are polynomials 
of ze .  The local form (32) for f is valid in a neighbourhood of the point z' = 0, i.e. the 
origin of the coordinate system in 3. Of course, the origin is not a special point, since the 
manifold is homogeneous; it is just related to the choice of coordinates. Transition to other 
domains of T, covering the manifold completely, can be performed by means of the group 
transformations. 

The group 8' acts on T by left multiplications. Actually, for any element g one has a 
unique decomposition 

gf ( z )  = f (L?z)p(z: g) p(z:  g) E P (33) 
and gz is a rational function of z .  For any element g which does not drive the point with 
coordinates zn outside the coordinate neighbourhood containing the origin where (32) is 
valid, gz and p ( z ;  g) can be obtained from (33) by means of a linear algebra. Performing 
two consecutive transformations, as in (2), one obtains 

p(z:gzgd = P k l z ; g z ) P ( z % g l )  Vg1.gzEGC. (34) 
The Lie equation for the holomorphic one-cocycles is derived from this cocycle condition 
in section 5. In view of (29), the decomposition (33) shows that 7 is a little group of T. 

4.2. Fundamental Kahfer potentials 

The solution to ( I )  was found by Bando, Kuratomo, Maskawa and Uehara [I21 (see 
also [14]). Partial solutions are given in terms of projection matrices qj. which exist in any 
matrix representation of 8" and correspond to elements of the Cartan subalgebra h j  E g. 
Their basic properties are as follows: 

(The hat stands for the matrix representation.) All n j  are commuting with each other. 
Respectively, in the group representation one has 

q j j ,  = 7 l f  V f  E G+ r l j h j  = Frlj  v p  E P . (36) 
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For any representation of Qc, where ij are diagonal, all q, are also diagonal. Each qj has 
1 on the diagonal where ii, has its minimum eigenvalues; all the other elements are 0. As 
is shown in [15], vj  can be expressed in terms of elements of Q'. For any given g, the 
matrices qj have different ranks for different j .  

Given q, the projected determinant is defined for any matrix M as 

de@ E det(qMq t I - q )  . (37) 

The operation is designed to be multiplicative for the Mackey decomposition, as follows 
from (36). Now the fundamentul K&ler potentials and the corresponding transition 
functions are defined for any j ,  namely [I21 

Kj(z , i )  logdet,(f^(~)~f^(z)) (38) 

(39) d [ z ;  g) = - logdet,$(z, 8). 

The transformation property (1) follows immediately from (33) and (36). The fundamental 
representation of Gc should be used for this construction. One can show that the use of 
the fundamental representation is essential in order to get all integral m l e r  two-forms 
from the basic potentials (38). As soon as f(z) is a polynomial, exp[Kj(r, i)] is also a 
polynomial in both sets of its arguments. As we show in the appendix, the fundamental 
m l e r  potentials can be represented also in another, sometimes more suitable form 

Ki(r, 2) = logdet'(f^(Ovjf^(z)t) (40) 

where det'M is the notation we use for product of all non-zem eigenvalues of M .  (The 
projection matrices 7 are singul-ar.) Similarly, the transition functions are given by 

@(z; g) = - logdet'(~f^(z)qj~(gz)-'). (41) 

Now for any given unitary group representation specified with a dominant weight I ,  
equation (31). one obtains the general expressions for the corresponding K&ler potential 
and the transition function 

j=1  

Respectively, expKQ) is a polynomial, and its degree is determined by 1. The standard 
orthogonalization procedure leads to construction of a (finite) polynomial basis {q5&)], 
starting from pi = 1 

N 

Having the fundamental Kahler potentials, one obtains the desired representation of the Lie 
algebra. 
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4.3. Construction of the momentum maps 

The explicit expressions for the W l e r  potential (equations (38)<41)) enable one to get a 
compact form for the symbol of the group element in (14). As follows from (33): 

U!)(<, i) = j=I n I [,,,, debj ( f ( ~ ) ~ i - ~ f ( C ) ) ] "  ( f ( z Y f ( 0 )  ~ j=l fi [ d e t f ( i - ' f ( < ) ~ j ~ ( ~ ) t ) ] J '  det'(f(<)vjf^(z)t) (45) 

In the local coordinates, the symbol of any group element is a rational function, its 
numerator being a polynomial with coefficients determined by the group element, while 
the denominator can be always chosen as the reproducing kernel (44). 

In order to get the symbols for the basis elements of the Lie algebra g, tn --t Td')(<, i), 
one has to apply the Lie derivative (equation (16)). The result is 

(46) 

Here the trace is taken in the fundmental representation, and the symbols depend on d 
linearly 

T$(<. i) = - tr(p')(<, F)io). 

I 

P ( ' ) (s ,  i) = x l j p j ( t *  Z) 

pj(i-9 2) E f(<)qj(vjf(z)+f^(<)qj + Z - qj)-'vjf(z)t. 

j=I (47) 

The fundamental projection matrices pj have the following properties, which can be obtained 
from the above expression, using (45): 

(48) p j ~ ,  i)' = P~(z ,  4)  
@[P,(C,  211 = tr(qj) Pj(03 0) = q j  , (49) 

- 2 -  pjK. Z) - pj(C9 F) 

Thus pj(z, Z) can be considered as qj transported from the origin of M to an arbitrary 
point, as both matrices have the same set of eigenvalues. These matrices are sometimes 
also called momentum maps [16, 171, but we retain this term for their components, given 
by (46). Another explicit expression for pj is derived in the appendix, namely 

pj(<, i )  = exp[-Kj(<,i)]FjQ~,(Fj) Fj E f(Otljf(z)' (50) 

where QF is a polynomial defined in the appendix, and its coefficients are also polynomials 
of (<, 2). The degree of QF is [rank(v) - 11, and QG = I if qj has only one unit eigenvalue. 

As follows from (33), the p-matrices are invariant, i.e. 

P@<>@) = 8P(S, z)st V8 E G (51) 

which leads to the equivariance of the momentum maps, equation (U). 
Thus a group representation is constructed in the space of holomorphic sections in 12, 

which according to the Borel-Weil-Bott theorem is the representation having the highest 
weight 1. If some of the components of 1 are zero, the little group is essentially larger 
than the maximal toms 7, the form w is degenerate, and neither the invariant volume nor 
the Poisson brackets can be introduced in 3. For such representations, the desired K&ler 
manifold is a section of the flag manifold, M c 3. The contraction is considered in the 
next subsection. 
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4.4. The Kahler manifolds of lower ranks 

Equations (24) show that w is degenerate if there is a number of pairs (a, a), for which 
&To = 0. Let us calculate the derivative using the representation (46). Applying the Lie 
derivative (16) to the definition (46), one obtains differential equations for p(<,  2) 

D(C)aPj = &PI - P j b j  D(Z)aPj P j &  - P j L P j  , (52) 
If 2. commntes with p j ,  the right-hand side vanishes. At the origin, z = 0, this is the case 
if (a wj) = 0 (cf equation (29)). Therefore if (1 . U) = 0 for a number of root vectors 
U E A$ c A i .  the Kihler (1,l)-form is degenerate at the origin, since the matrix was has a 
number of zero eigenvalues, as follows from (24). In this case, the (1,l)-form is degenerate 
everywhere in 3, because it is transported homogeneously from the origin. The set of the 
root vectors A$ orthogonal to 1 is generated by a set of primitive roots vj for which l j  = 0. 
Correspondingly, the Lie algebras c g has the basis elements e,. 

In other words, if l j  = 0 for some j ,  the Kmer structure on 3 is degenerate. Now F can 
be considered as a fibre bundle, M being its base, where the unitary group representation 
R1 generates a non-degenerate KXhler structure. The local coordinates on M are introduced 
by restriction z,, = 0 for U E A:. Respectively, the little group of M is larger than the 
maximal torus 

- 

M = q n  n=st37? (53) 
where S is the semi-simple Lie group having s as its Lie algebra, and 7' c 7 is a torus 
generated by those basis elements hj,  for which l j  # 0. This construction has a clear 
interpretation in terms of Dynkin graphs [18]. Given a group representation RE, one has to 
eliminate from the Dynkin graph the nodes for which lj # 0. The number of such nodes is 
k < r, it may be called the rank of M .  The remaining nodes indicate a semi-simple Lie 
algebra s c h c g. As soon as the fundamental M e r  potentials are constructed for 3, 
the reduction to M is obtained by constraints za = 0 in the definition o f f  ( z )  in (32). The 
parabolic subgroup P is extended respectively; its Lie algebra is p = g- + t' + sc. 

The representation dimensionality, given by the Weyl formula, can be represented also 
in terms of integrals on M (see equation (IO)) 

where p = cj wj. Actually, the product here is taken for a E A: \ A:, since the weight 
vector 1 is orthogonal to all roots belonging to s. 

5. Holomorphic cocydes and Killing vectors 

The Lie derivative of elements of the parabolic subgroup P ,  as given in (33). leads to a 
transport of the basis in the Lie algebra, which looks like a transformation of gauge fields 

&(z) D,p(z: g)I8=< = f ( z ) % f ( z )  - f ( z ) - ' V , f ( z )  E p .  (55) 
The holomorphic cocycles in (18) and (22) are expressed in terms of these matrices in the 
fundamental representation of g 

The cocycle condition (34) is equivalent to the following set of differential equations: 

V&Z) - V*-4&) + I & ( Z ) ,  6dZ)l = frfbtk). (57) 
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The equalities (20) follow immediately. It is noteworthy that the left-hand side, like the 
gauge field strengths, is a curvature tensor on the manifold. 

As soon as & ( z )  belongs to the Lie algebra p = g \ g+, the following equations hold 
(Va and V,9 E A:) which can be used to get explicit expressions for the Killing fields: 

tr(.$&(z)) = 0 = &(@(z)-'r&z)) - 6," tr(i$f(z)-'&f(.?)). 

D Bar-Moshe and M S Marinov 

(58) 

The Killing fields are obtained now in terms of the adjoint group representation A(g). Let 
us use the following notation (capitals stand for the adjoint representation matrices): 

Z E zuE,  A(z) = exp(-Z) B(z) = (I - A(z))/Z. (59) 

Here Ea is the adjoint representation of e, E gc, so Z is a nilpotent (triangular) matrix, 
and the mahices A(z) and B(z)  are polynomials in Z. The matrix B ( z )  appears in the 
Cartan-Maurer one-form, which takes its values in the Lie algebra g 

f(z)-'df(z) = deuBz(z)r,. (60) 

Thus the Killing vector fields K: satisfy the following set of linear equations: 

K,"(z)Bt(z) = A!(z). (61) 

The solution exists, as soon as the minor of B(z)  corresponding to the Bore1 subalgebra 
does not vanish; K,"(z) is arational function of z .  

6. Conclusion 

The results presented here can be summarized as follows. For any unitary representation RI 
of a compact simple group G, one can construct a compact homogeneous KMer manifold 
M s G/'U and a Hilbert space 1: of (locally) holomorphic functions which can be considered 
as a line bundle upon M .  The Lie algebra g is realized in L by means of linear differential 
operators, or by means of functions on M ,  called symbols of g or momentum maps. If RI 
is a non-degenerate representation, i.e. projections of the dominant weight vector I upon all 
primitive roots are positive integers, 'H is the maximal torus, M is the flag manifold, and 
its complex dimensionality equals the number of the positive roots of g. Otherwcise, M is a 
section of the flag manifold and 'H is a torus times a simple group. The Kihler potential for 
M is constructed explicitly in terms of the fundamental group representation. It is given 
as a superposition of a number of fundamental potentials with positive integer coefficients 
(equation (42)). 

The manifold M can be considered as a phase space of a dynamical system, and 
elements of the Hilbert space represent the generalized coherent states. The Poisson brackets 
are derived from the Kaler  shvcture, providing a realization of the Lie algebra g in terms 
of the momentum maps. From this point of view, the construction described here is the 
Berezin quantization on homogeneous manifolds. 

The Wler structure can he introduced in M by means of (42) with arbitrary coefficients 
l j ,  and one obtains a representation of the Lie algebra. Then the manifold can be still 
considered as a phase space of a dynamical system, hut quantization (and the unitary group 
representation) is possible only for integer coefficients. 

Extension of the present approach to non-compact groups and infinite-dimensional 
(universal) groups is the subject of a future work. 
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Appendix A. Derivation of equations (40) and (50) 

We shall consider the fundamental W l e r  potential, given in (38) according to [12], as a 
limit at t + 1 of the following function: 

K ,  = logdet[I - tq ( I  - M)qI = trlog[Z - t q ( I  - M ) q ]  (AI) 
Using the expansion in powers o f t  at t c 1, one obtains for q = q2 

M 5 f t f .  

Kt = tr{lOg[I - t ( Z  - F)] -(I - q)log(l - t ) )  F E f q f t .  (A2) 
Let us introduce the following notation: N is the dimensionality of the matrix representation, 
PF(A) = det(F - A I )  is the characteristic polynomial for matrix F, and U = tr(I - q )  is 
the number of zero eigenvalues of rl (and of F), r = (1 - t ) / t .  Now the result in (40) is 
evident from 

K ,  = log - "(-') - ( N  - u)log(l + r )  (A3) 

(The function logdet', where det' is the Fredholm determinant of an elliptic operator in the 
Hilbert space with its zero modes excluded, also appears as the derivative of the operator 
t-function at zem, cf, for example. [19].) 

Similarly, one obtains equation (49) for the matrix p,  which can be represented by the 
same limit, namely 

(A4) 

In other words, the eigenvalues of p vanish together with the eigenvalues of F ,  and are 
equal to 1 otherwise. As soon as the rank of F equals the rank of q, one can write the 
characteristic polynomial as follows: 

K = lim K ,  = 1ogdet'F. r" r-0 

p = iim F(F + rI1-I. 
*A0  

Ps(A) = ( -A)"[Dp - AQF(A)] DF E det'F. (A-5) 

Here QF@) is a polynomial of degree N I  = N - v - 1, and its coefficients are polynomials 
in ({, i), which are expressed in terms of the traces f. = tr(F") for n = 1, . . . , N I ,  namely 

Q.u(?,) = (-A)Nt t fi(-A)"-l t '(f2 2 1  - f2)(-A)N'-2 t. . . . (A6) 

The result in (50) follows, as soon as DF = exp(K), which is also a polynomial in f,. 

Appendix B. Example: Unitary groups and the Grassmann manifolds 

For E = S U ( N ) ,  the fundamental group representation is N-dimensional, and the index 
in (42) is in the interval 1 < j < r = N - 1. Up to a normalization factor, the eigenvalues 
of i i j  are -1 (j times), j, and 0 ((N - j - 1) times). The corresponding projection matrix 
qj has j values 1, other ( N  - j )  values are 0. The local coordinates corresponding to 
the positive roots are elements of a triangular matrix i, i.e. z j k ,  1 < j .c k < N (other 
elements of the matrix are zero), and the complex dimensionality of 3 is $N(N - 1). The 
matrix f̂ (z) is triangular; its diagonal elements are 1, and polynomials in za stand above 
the diagonal. The manifold F has an additional symmetry under a reflection of the root 
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space, so that j + N - j + 1, and q ~ - j + l - +  u ( l  - q,)u-', where U is a matrix reversing 
the order of components. Matrices Fj = f q j f '  can easily be obtained in a general form. 

The Grassmann manifold M = Gr@, q)  = V ( p  + q ) / U ( p )  63 U ( q )  (where 1 < q < 
p < N p + q)  is a rank-one section of 7. The group representation realized in M 
is  specified with a positive integer I, and I ,  = 18jq. The complex dimensionality of the 
manifold is pq. and the local coordinates are elements of a p x q matrix i, so that the 
elements of 3; are fit = ~ j x  + Zj ,k-p ,  where 1 < j < p .  and p + 1 < k < p + q .  The 
resulting Kiihler potential is 

(B1) 
For q = 1, i is a complex vector, M E CPN-' is the complex projective space, and the 
FubiniStudy form 1131 appears from the K&kr potential. The mehics are 'quantized', 
since I is an integer. 

It is noteworthy that for any compact Lie group the m l e r  structure can be obtained 
by restriction from a unitary group, as soon as the group is embedded in it, B c SU(N).  

D Bar-Moshe and M S Marinov 

K ( z ,  i) = I logdet(1, + $2) .  
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